Generalization error for multi-class margin classification

نویسندگان

  • Xiaotong Shen
  • Lifeng Wang
چکیده

In this article, we study rates of convergence of the generalization error of multi-class margin classifiers. In particular, we develop an upper bound theory quantifying the generalization error of various large margin classifiers. The theory permits a treatment of general margin losses, convex or nonconvex, in presence or absence of a dominating class. Three main results are established. First, for any fixed margin loss, there may be a trade-off between the ideal and actual generalization performances with respect to the choice of the class of candidate decision functions, which is governed by the trade-off between the approximation and estimation errors. In fact, different margin losses lead to different ideal or actual performances in specific cases. Second, we demonstrate, in a problem of linear learning, that the convergence rate can be arbitrarily fast in the sample size n depending on the joint distribution of the input/output pair. This goes beyond the anticipated rate O(n). Third, we establish rates of convergence of several margin classifiers in feature selection with the number of candidate variables p allowed to greatly exceed the sample size n but no faster than exp(n). AMS 2000 subject classifications: Primary 68T10, 62H30.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superior Multi-Class Classification Through a Margin-Optimized Single Binary Problem

The problem of multiclass-to-binary reductions in the context of classification with kernel machines continues to attract considerable attention. Indeed, the current understanding of this problem is rather limited. Despite the multitude of proposed solutions no single method is known to be consistently superior to others. We developed a new multi-class classification method that reduces the mul...

متن کامل

Multi Class Classification

Generalization error of classifier can be reduced by larger margin of separating hyperplane. The proposed classification algorithm implements margin in classical perceptron algorithm, to reduce generalized errors by maximizing margin of separating hyperplane. Algorithm uses the same updation rule with the perceptron, to converge in a finite number of updates to solutions, possessing any desirab...

متن کامل

The Margin Vector, Admissible Loss and Multi-class Margin-based Classifiers

We propose a new framework to construct the margin-based classifiers, in which the binary and multicategory classification problems are solved by the same principle; namely, margin-based classification via regularized empirical risk minimization. To build the framework, we propose the margin vector which is the multi-class generalization of the margin, then we further generalize the concept of ...

متن کامل

Computational Complexity of Linear Large Margin Classification With Ramp Loss

Minimizing the binary classification error with a linear model leads to an NP-hard problem. In practice, surrogate loss functions are used, in particular loss functions leading to large margin classification such as the hinge loss and the ramp loss. The intuitive large margin concept is theoretically supported by generalization bounds linking the expected classification error to the empirical m...

متن کامل

Ho–Kashyap with Early Stopping vs Soft Margin SVM for Linear Classifiers – An Application

In a classification problem, hard margin SVMs tend to minimize the generalization error by maximizing the margin. Regularization is obtained with soft margin SVMs which improve performances by relaxing the constraints on the margin maximization. This article shows that comparable performances can be obtained in the linearly separable case with the Ho–Kashyap learning rule associated to early st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008